【www.0477edu.com--热点资讯】
【编者按】教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。
一、教材分析
(一)教材的地位和作用
本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用.学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法.总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力.
(二)教材的重难点
本节的重点是探索并掌握列一元一次方程解决实际问题的方法.而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定“找出已知量与未知量之间的关系,尤其是相等关系”为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二.
二、教学目标分析
(一)知识技能目标
1.目标内容
(1)结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性.
(2)培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.
2.目标分析
(1)本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径.
(2)七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力.
(二)过程目标
1.目标内容
在活动中感受方程思想在数学中的作用,进一步增强应用意识.
2.目标分析
利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决.
(三)情感目标
1.目标内容
(1)在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心.
(2)通过对实际问题的解决,进一步体会“数学来源于生活,且服务于生活”的辩证思想.
2.目标分析
七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切.利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键.
三、教材处理与教法分析
本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ).根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者.本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果.课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识.
四、教学过程分析
(一)教学过程流程图
探究Ⅰ
(二)教学过程Ⅰ
(以探究为主线、形式多样化)
1.问题情境
(1)多媒体展示有关盈亏的新闻报道,感受生活实际.
(2)据此生活实例,展示探究Ⅰ,引入新课.
考虑到学生不完全明白“盈利”、“亏损”这样的商业术语,故针对性地播放相关新闻报道,然后引出要探索的问题Ⅰ.
2.讨论交流
(1)学生结合自己的生活实际,交流对“盈利”、“亏损”含义的理解.
(2)学生交流后,老师提出问题:某件商品的进价是40元,卖出后盈利25%,那么利润是多少?如果卖出后亏损25%,利润又是多少?(利润是负数,是什么意思?)
(3)要求学生对探究Ⅰ中商店的盈亏进行估算,交流讨论并说明理由.在讨论中学生对商店盈亏可能出现不同的观点,因此引导学生用数学方法解决问题,统一认识.
(4)师生互动,要知道究竟是盈是亏,必须先知道什么?从而引出要算出每件衣服的进价.
让学生讨论盈利和亏损的含义,理解其概念,建立感性认识;乍一看,大多数学生可能在大体估算后得到不亏不盈,直觉上也是如此,但要解决实际问题,还要知其原价(未知量),从这一分析引入未知量,为后面建立模型,做了必要的铺垫.
3.建立模型
(1)学生自主探索,寻找已知量与未知量之间的关系,确定相等关系.
(2)学生分组,根据找出的相等关系列出方程,其中一组计算盈利25%的衣服的进价,另一组计算亏损25%的衣服的进价.
(3)师生互动:①两件衣服的进价和为________;②两件衣服的售价和为________;③由于进价________售价,由此可知两件衣服的盈亏情况.
(教师及时给出完整的解答过程)
学生分组、计算盈亏;教师参与、适当提示;师生互动、得到决策.这样设计,让学生体会到合作交流、互相评价、互相尊重的学习方式,有利于学生知识的形成与发展,也有利于学生健康人格的养成.这样设计易于突出重点,突破难点,巩固应用一元一次方程作工具来解决实际问题的方法,也很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得富有成效的学习体验.
【编者按】教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。
一、教材分析
(一)教材的地位和作用
本节课有两个内容,即学习画五角星和学习制作五角星,两部分相比较而言,学制作比较难,因为学生长期受应试教育的影响,动手能力比动笔能力明显要差,所以本节内容既是培养学生动手能力和实践能力的一个载体,又是对学生进行爱国主义教育和中国传统文化(剪纸艺术)教育的极好素材,除此之外,它还是今后学习比例线段(黄金分割)、正多边形和圆等知识的基础,其在实际生活中也有广泛的应用。
(二)重点难点
1.重点
学生学会画五角星,会制作五角星。
2.难点
五角星制作的探究过程。
二、目标分析
(一)知识与技能目标
通过本节课的学习,会画一个五角星,会用一张纸制作一个五角星,培养学生分析问题和解决问题的能力及动手实践能力。
(二)数学思考目标
通过本节课的学习,让学生通过感知、观察、试验、操作等活动充分感受数学在实际生活中的作用。
(三)情感与态度目标
在学习探讨的过程中体验数学问题的探索性与创造性,通过学生之间的交流与合作,培养学生在独立思考的基础上,能够尊重理解他人的意见,并学会与他人合作的能力。在合作中体验成功的喜悦,树立信心。
三、教学过程
(一)创设情境
1.电脑演示
升国旗仪式,把图案定格在国徽上的五角星。
2.继续演示
闪闪发光的五角星在引导学生感知五角星的和谐、完美的同时向学生渗透数学知识。
首先让学生再次体验升国旗时庄严肃穆的氛围,看到冉冉升起的国旗上,闪闪发光的五角星,心中便升腾起一种美好的希望,同时也激发了学生创造、联想的积极性。
(二)感知体验
1.鼓励学生自己动手画五角星,让学生用各种方法画出形态各异的五角星。
让学生充分发挥自己的想像力。
2.提出问题,对比于演示的五角星,如何画出完美、和谐的五角星?(学生讨论3~5分钟)
激发学生探求新知识的欲望。
3.启发学生
电脑演示(1):规则的五角星围绕它的中心旋转。
学生发现规则的五角星的五个顶点在以五角星的中心为圆心的圆上。
提出探究问题:五点在同一圆上的五角星是否一定是规则的五角星?
电脑演示(2):五点在同一圆上的不规则五角星。
学生动手实践得出结论:五点均匀分布。
电脑演示(3):规则的五角星五个顶点均匀地分布在圆上。
学生讨论:计算出的周角被五等分,每个角。即五等分圆周。
学生虽然不知道其中的数学道理,但可以通过图像演示来感知。
4.师生共同小结画五角星的步骤
4.小结
一个感悟:估算与主观判断往往与实际情况大相径庭,需要我们通过准确的计算来检验自己的判断.
培养学生科学的学习态度与严谨的学习作风.
探究Ⅱ
(三)教学过程Ⅱ
1.在灯具店选购灯具时,由于两种灯具价格、能耗的不同,引起矛盾冲突.
恰当的问题情境激发学生探索的欲望,同时让学生体会到数学来源于生活,又服务于生活的实用性.
启发:选择的目的是节省费用,费用又是由哪些因素决定的?学生讨论得出结论:
2.列代数式
费用=灯的售价+电费
电费=0.5×灯的功率(千瓦)×照明时间(时)
在此基础上,用t表示照明时间(小时).要求学生列出代数式表示这两种灯的费用.
节能灯的费用(元):60+0.5×0.011t.
白炽灯的费用(元):3+0.5×0.06t.
分析各个量之间的关系,列出代数式,为后面列方程,并进一步探索提供了基础.
3.特值试探 具体感知
学生分组计算:
t=1000、2000、2500、3000时,这两种灯具的使用费用,填入下表:
时间(小时)
1000
2000
2500
3000
节能灯的费用(元)
白炽灯的费用(元)
学生填完表格后,展示由表格数据制成的条形统计图.
引导学生讨论:从统计图表,你发现了什么?
问题的答案是多样的,师生共同得出:照明时间不同,作出的选择不同.
由于在前面的第二节,学生已经学过“两种移动电话计费方式”的一道例题,因此学生应该能较熟练地完成表格中的特值试探.又因为七年级学生的认知以直观形象为主,再给出统计图,完成特殊到一般,感性到理性的深化.
4.方程建模
观察统计图,你能看出使用时间为多少(小时)时,这两种灯的费用相等吗?
列出方程:
60+0.5×0.011t=3+0.5×0.06t
5.合作交流 解释拓展
(1)照明时间小于2327小时,用哪种灯省钱?照明时间超过2327小时.但不超过3000小时,用哪种灯省钱?
学生分组讨论,交流各自的看法.
(2)如果计划照明3500小时,则需购买两个灯,设计你认为合理的选灯方案.
学生分组、讨论购灯方案只有三种:①两盏节能灯;②两盏白炽灯;③一盏节能灯、一盏白炽灯.
学生计算各种方案所需费用.
关于选灯方案③,学生可能会有不同的结果,先让学生充分展示他们的计算理由,然后对学生得出“使用节能灯3000小时,白炽灯500小时”的结论,给予充分肯定,并引导学生寻找理论依据,列式验证:
设节能灯的照明时间为t(小时),那么总费用为:
60+3+0.5×0.011t+0.5×0.06(3500-t)=168-0.0245t(0≤t≤3000)
观察上式可看出,只有当t=3000时,总费用最低.
培养学生合作交流,倾听他人意见,并从交流中获益的学习习惯,综合各方面信息的能力.讨论2需要考虑的情形不只一种,通过这一问题,培养分类讨论的思想,养成缜密的思维品质.此处渗透着函数、不等式和分类讨论的思想,为后面学习实际问题提供了实践经验.
6.反馈练习
一家游泳馆每年6~8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元,讨论并回答:
(1)什么情况下,购会员证与不购证付相同的钱?
(2)什么情况下,购会员证比不购证更合算?
(3)什么情况下,不购会员证比购证更合算?
适时的反馈练习,以加深学生对这一知识的理解,逐步完善自己的知识结构.
(四)教学小结
学生分组小结“本课学到了什么”,各组发言交流体验、教师总结:
五、设计说明
七年级学生的年龄特征决定了他们好奇心强,思想活跃、求知心切.因此我从“以人为本”的理念出发,依据数学的工具性和人文性等特点,在整个教学活动中始终关注学生的发展,培养学生的创新精神与创新能力.
(一)充分尊重学生的主体地位
发挥学生的主体作用,坚持让学生自主探索、合作交流,展示学生的思维过程.
(二)树立方程建模思想
突出解释与应用,渗透函数、不等式、分类讨论等数学思想和方法,培养学生应用数学的意识.
(三)注重对学习过程与方法的评价
关注学生参与数学活动的热情,与他人合作的态度,以及独立地分析问题、解决问题的能力,力争让不同的人在数学上得到不同的发展.
(1)某种商品因换季打折出售,如果按定价的七五折出售将赔25元;而按定价的九折出售将赚20元.问这种商品的定价为多少元?
(2)某商店为了促销A牌高级洗衣机,规定在元旦那天购买该机可以分两期付款,在购买时先付一笔款,余下部分及它的利息(年利率为5.6%)在明年的元旦付清,该洗衣机售价是每台8224元,若两次付款相同,问每次应付款多少元?
(3)工厂甲、乙两车间去年计划共完成税利720万元,结果甲车间完成了计划的115%,乙车间完成了计划的110%,两车间共完成税利812万元,求去年两个车间各超额完成税利多少万元?
(4)一辆汽车用40千米/时的速度由甲地驶向乙地,车行3小时后,因遇雨平均速度被迫每小时减少10千米,结果到达乙地时比预计的时间晚了45分钟,求甲、乙两地间的距离.
(5)甲、乙两人合办一小型服装厂,并协议按照投资额的比例多少分配所得利润,已知甲与乙投资比例为3∶4,第一年共获利30800元,问甲、乙两人可获利润多少元?
(6)有人问老师班级有多少名学生时,老师说:“一半学生在学数学,四分之一学生在学音乐,七分之一的学生在读外语,还剩六名学生在操场踢球.”你知道这个班有多少名学生吗?
(7)某人10时10分离家去赶11时整的火车,已知他家离车站10千米,他离家后先以3千米/时的速度走了5分钟,然后乘公共汽车去车站,问公共汽车每小时至少走多少千米才能不误火车?
综合运用
4.某市居民生活用电基本价格是每度0.40元,若每月用电量超过a度,超出部分按基本电价的70%收费.
(1)某户五月份用电84度,共交电费30.72元,求a;
(2)若该户六月份的电费平均为每度0.36元,求六月份共用电多少度?应交电费多少元?
5.为了鼓励节约用水,市政府对自来水的收费标准作如下规定:每月每户不超过10吨部分,按0.45元/吨收费;超过10吨而不超过20吨部分,按0.80元/吨收费;超过20吨部分,按1.5元/吨收费.现已知李老师家六月份缴水费14元,问李老师家六月份用水多少吨?
6.一支自行车队进行训练,训练时所有队员都以35千米/时的速度前进.突然,有一名队员以45千米/时的速度独自行进,行进10千米后调转车头,仍以45千米/时的速度往回骑,直到与其他队员会合.你知道这名队员从离队到与队员重新会合,经过了多长时间吗?
7.有8名同学分别乘两辆轿车赶往火车站,其中一辆轿车在距离火车站15千米时出现故障,此时离火车停止检票时间还有42分,这时惟一可以利用的交通工具只有一辆轿车,连司机在内限乘5人,这辆小轿车的平均速度为60千米/时.这8名同学都能赶上火车吗?
拓广探索
8.一家庭(父亲、母亲和孩子们)去某地旅游.甲旅行社说:“如父亲买全票一张,其余人可享受半价优惠.”乙旅行社说:“家庭旅行算集体票,按原价的优惠.”这两家旅行社的原价相同.你知道哪家旅行社更优惠吗?
初一数学教案栏目
【编者按】教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。
一.教学目标
1.知识与技能
(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;
(2)在有理数加法法则的教学过程中,注意培养学生的运算能力.
2.数学思考
通过观察,比较,归纳等得出有理数加法法则。
3.解决问题
能运用有理数加法法则解决实际问题。
4.情感与态度
认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
5.重点
会用有理数加法法则进行运算.
6.难点
异号两数相加的法则.
二.教材分析
“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。
三.学校与学生情况分析
冲坡中学是乐东县利国镇的一所完全中学,学生都来自农村,学生的基础及学习习惯是比较差。学生对新的课堂教学方法不是很适应;不过,在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。现在,班级中已初步形成合作交流和勇于探究的良好学风,学生间互相评价和师生互动的课堂气氛已逐步形成。
四.教学过程
(一)问题与情境
我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为
4+(-2),
黄队的净胜球为
1+(-1)。
这里用到正数与负数的加法。
(二)、师生共同探究有理数加法法则
前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.
两个有理数相加,有多少种不同的情形?
为此,我们来看一个大家熟悉的实际问题:
足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:
(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是
(+3)+(+1)=+4.
(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是
(-2)+(-1)=-3.
现在,请同学们说出其他可能的情形.
答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是
(+3)+(-2)=+1;
上半场输了3球,下半场赢了2球,全场输了1球,也就是
(-3)+(+2)=-1;
上半场赢了3球下半场不输不赢,全场仍赢3球,也就是
(+3)+0=+3;
上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是
(-2)+0=-2;
上半场打平,下半场也打平,全场仍是平局,也就是
0+0=0.
上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?
这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数.
(三)、应用举例变式练习
例1口答下列算式的结果
(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);
(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.
学生逐题口答后,师生共同得出
进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
例2(教科书的例1)
本文来源:http://www.0477edu.com/thread-45704-1-1.html